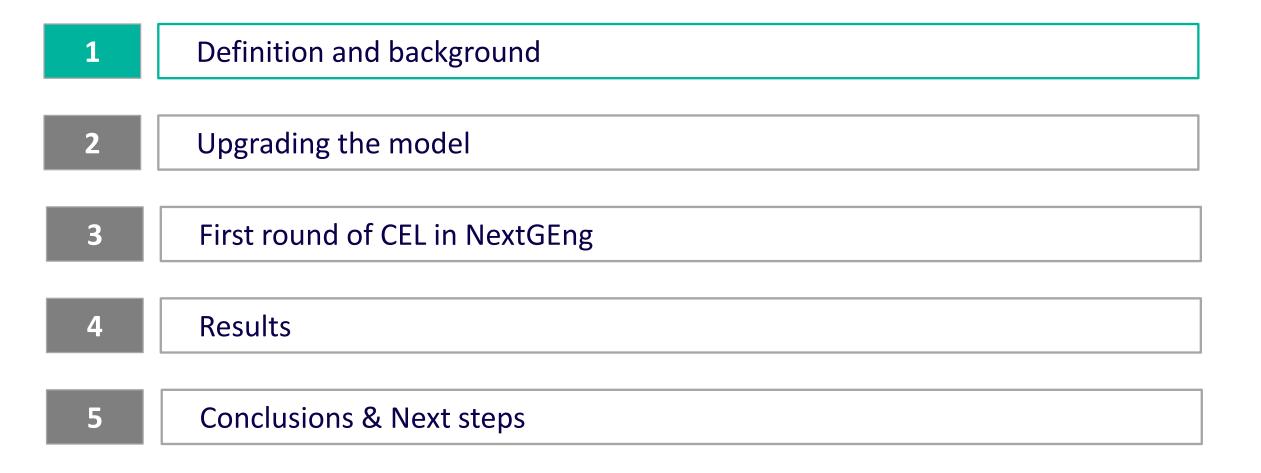
Cases of Experiential Learning projects: A successful model for HEI student-company cooperation

Dr. Silvia Satorres, University of Jaen (UJA), Spain

Mrs. Anneli Kakko, Jamk University of Applied Sciences (JAMK), Finland



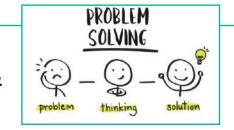
Definition

Cases of Experiential Learning (CEL) projects

Formal definition

Project Based Learning (PBL) is a teaching method in which students gain knowledge and skills by working for an extended period of time (several weeks up to a semester) to investigate and respond to an authentic,

5


engaging, and complex question, problem, or challenge

Active learning: students participate in hands-on activities and apply learning

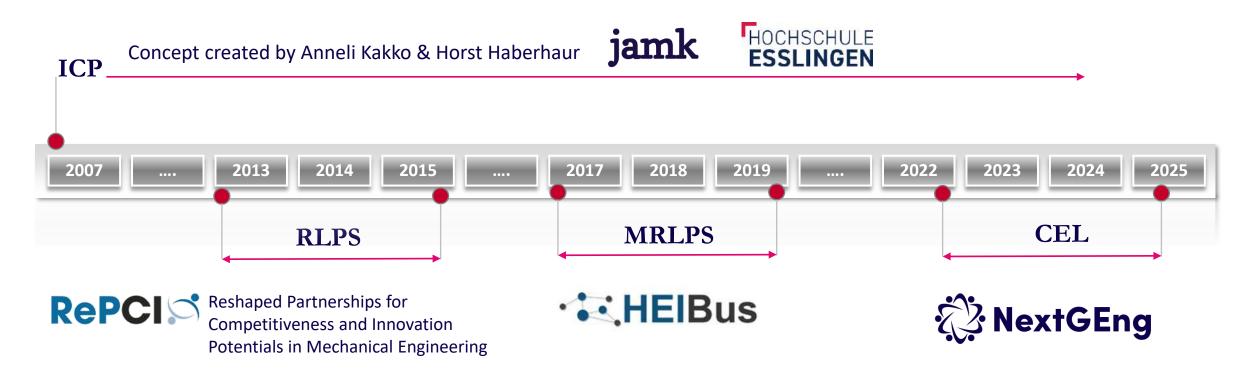
Emphasis on **problem-solving** & **critical thinking** skills

Main **Features**

Encourage collaboration & team work

Student-centered: allowing students to take an active role in their own learning STUDENT-CENTERED

Assessment is based on the project and how well students applied the content



LEARNING

Background

Background

International Cooperation Project (ICP) has been the background for many international student project concepts

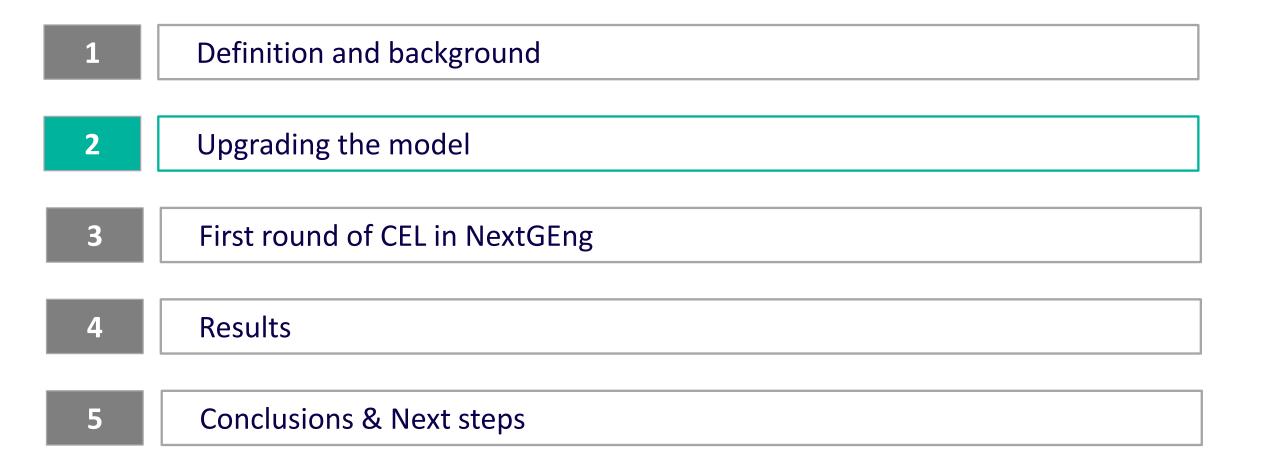
Background

International Cooperation Project (ICP)

- **Duration**: 1 semester & 5 ECTS credits
- Who takes part?: 8 JAMK students and 8 HE students and two supervisors from both universities
- Students form two international teams which compete each other
- **Real-life topic** and **tutors** for the project are always coming from **Finnish** or **German** companies
- Two intensive weeks one in both countries and HEIs
- HEI supervisors give the grades and company tutors choose the winning team

HOST COMPANIES: Moventas (2008), Valtra (2010 & 2012), Metso (2010), Elomatic (2011), HT Laser (2013), Pikval (ITAB Finland, 2016), Valmet (2022)

HOST COMPANIES: Festo (2009 & 2014), Festool (2011 & 2023), Kärcher (2012), Komet (2013), Heller (2015 & 2017), Werner Bayer (2019)



Upgrading the model

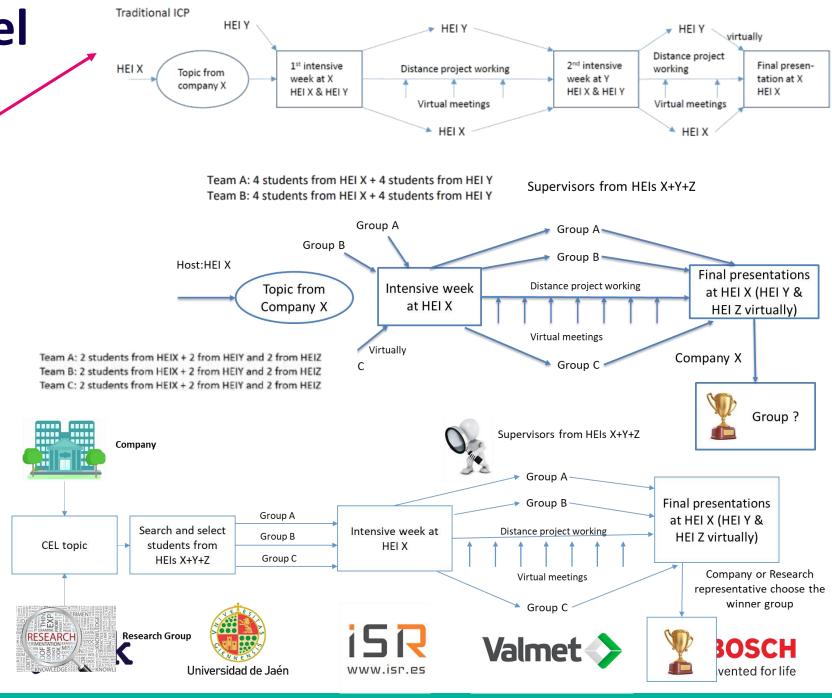
REAL LIFE PROBLEM SOLVING

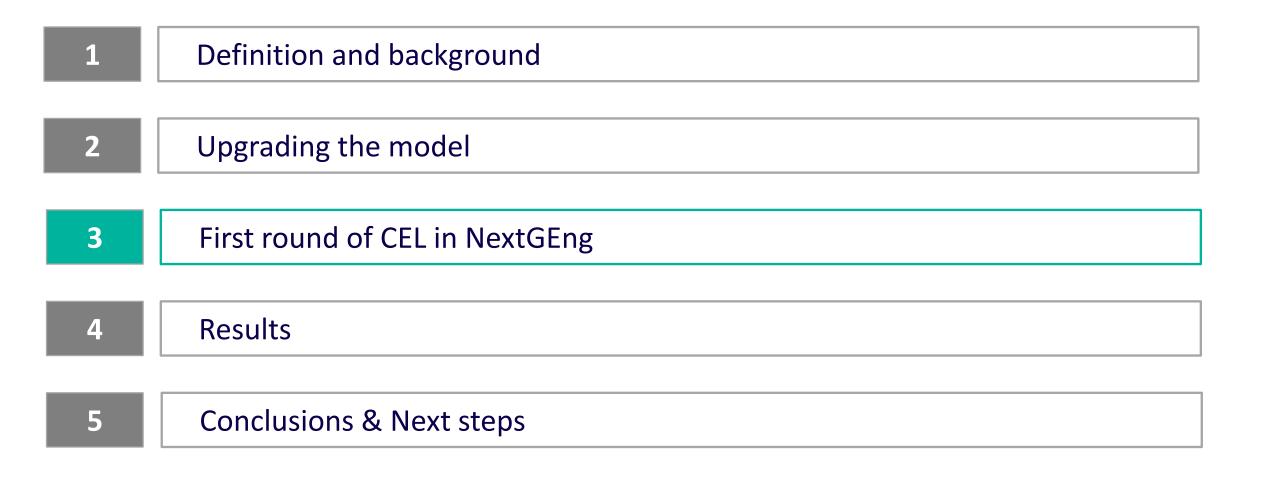
Adapted from ICP

HEIBus

MULTIDISCIPLINARY REAL LIFE PROBLEM SOLVING (HEIBUS)

- Three groups of students
- Six students in each group
- Multidisciplinary team
- One group completely virtual




CASES OF EXPERIENTIAL LEARNING

- Topic from company or a research group
- No virtual group

CEL projects in NextGEng

- Two rounds of CEL projects → 3 projects in each round
- At least 150 participants in total

ROUND	Company/research group representative	HEIs supervisors	Students
1	At least 3	18	54
2	At least 3	18	54

ROUND	Start Date	End Date
1	01/03/2023 (M6)	30/05/2024 (M20)
2	01/06/2024 (M21)	30/07/2025 (M34)

3 projects in 2023/2024, spring semester (ISR+TUCN research group + Valmet)

3 projects in 2024/2025, spring semester (UJA RG + Bosch + Valmet)

One CEL Project → At least 25 participants

At least **one** Company or research group supervisor

6 supervisors from HEIs (2 UJA + 2 JAMK + 2 TUCN)

	INTERNATIONAL & MULTIDISCIPLINARY TEAMS						
NTS	Group-A	Group-B	Group-C				
TUDE	UJA UJA	UJA UJA	UJA UJA				
18 ST	JAMK JAMK	JAMK JAMK	JAMK JAMK				
	TUCN TUCN	TUCN TUCN	TUCN TUCN				

- Title: Design of an olive quality control system
- **Objective**: Design and develop a station (machine vision system) able to classify the olive quality based on multispectral and or hyperspectral images of olive fruits.
- Student tasks:
 - Project planning.
 - Acquisition station CAD design.
 - Development of computer vision algorithms for quality assessment

TRAINING GUIDE

Figure 1: OK vs KO, bruised ofive

ко 🗙

OK√

STUDENTS RESULTS

CEL1 → ISR

HOLDING DEVICES

FRUITS INSPECTION

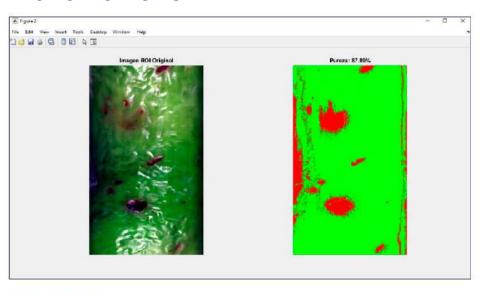
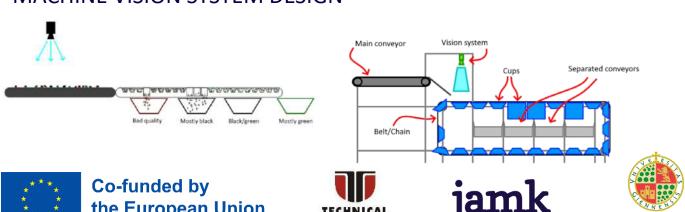
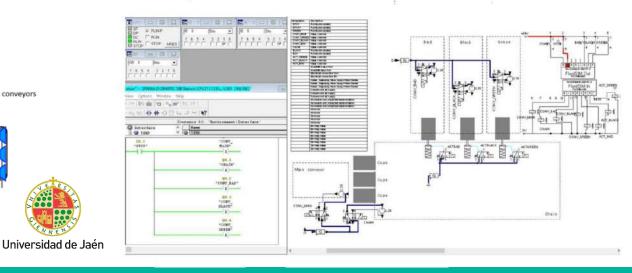




Figure 7: OK vs KO, Heat map

MACHINE VISION SYSTEM DESIGN

PLC PROGRAMMING

• Title: 3-axes GANTRY ROBOT (3GR)

- the movement along the X, Y, Z axes is carried out using electric motors mounted on the fixed base of the robot (they must not be mounted on moving parts)
- the transmission of the movement for the axes (X, Y, Z) is done using toothed belts
- the robot workspace is 300 x 400 x 200 mm3 (X, Y, Z)

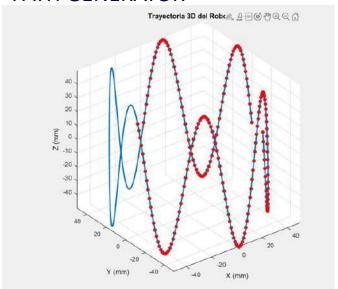
on the Z axis a gripper is attached; the gripper must be able to manipulate workpieces with cylindrical

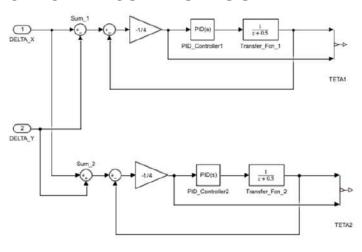
geometry: 30 mm (diameter), 30 (height), 50 grams (mass); the gripper can be operated by any

technology

• Student tasks:

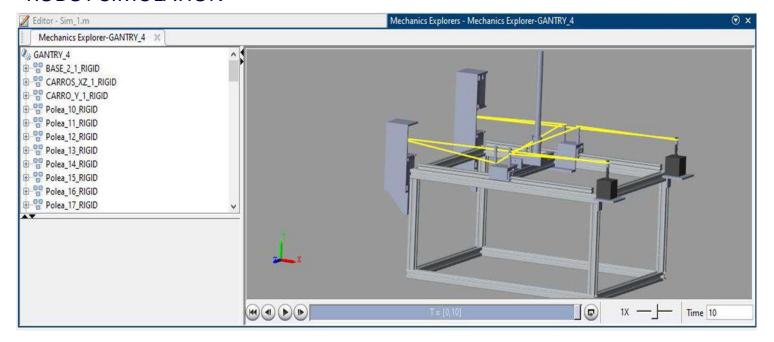
- Conceptual design of 3GR and gripper
- Virtual prototyping and validation
- Result analysis: benefits and drawbacks

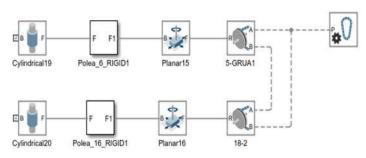



CEL2 → TUCN

CEL2 → **TUCN**

PATH GENERATOR

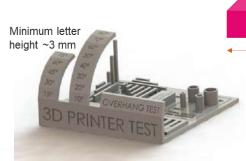


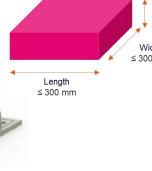

SIMULINK CONTROL LOOP

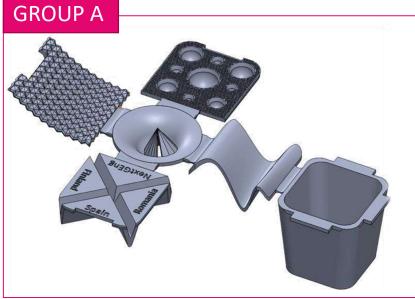
ROBOT SIMULATION

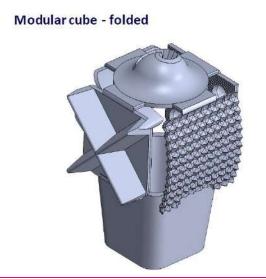
CEL3 → VALMET

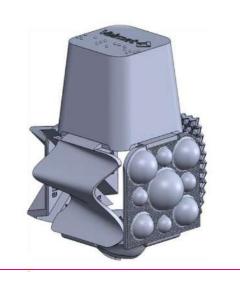
- Title: Design of a test object for a pressing-based manufacturing process
- **Objective**: Conceptualizing and designing a "test object" for a pressing-based manufacturing process. The knowledge from such tests can be used to adjust process parameters and mechanics for totally new concept of pressing wood-based materials
- Student tasks:
 - Project planning
 - Working with test object for a pressing-based manufacturing process
 - 3D models and/or concept-level technical drawings
 - Hand-drawn or digital illustrations (e.g. PowerPoint, Photoshop, Paint) or low- to medium-fidelity physical prototypes made from materials such as wood, plastic (3D-printing) or modelling clay



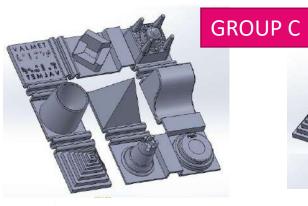








CEL3 → **VALMET**



Requirements	
Rounded corner	1
Sharp corner	1
Steep wall	1
Gently sloped wall	1
Flat surface	1
Single curvature	1
Douple curvature	1
Complex douple curvature	1
Changing radius	1
Small details	1
Varying depths	1
Intersections and points of discontinuity	1

Manufacturability

- Thickness 2 mm almost everywhere.
- 5 degrees draft angle achieved. Some cylindrical shapes starts from zero draft.
- Total size under 180x180x60 mm

SCHEDULE

Week 7 → Intensive week

Week 8

Week 9

Week 10

Week 11

Week 12

Week 13

Week 14

Week 15

Week 16

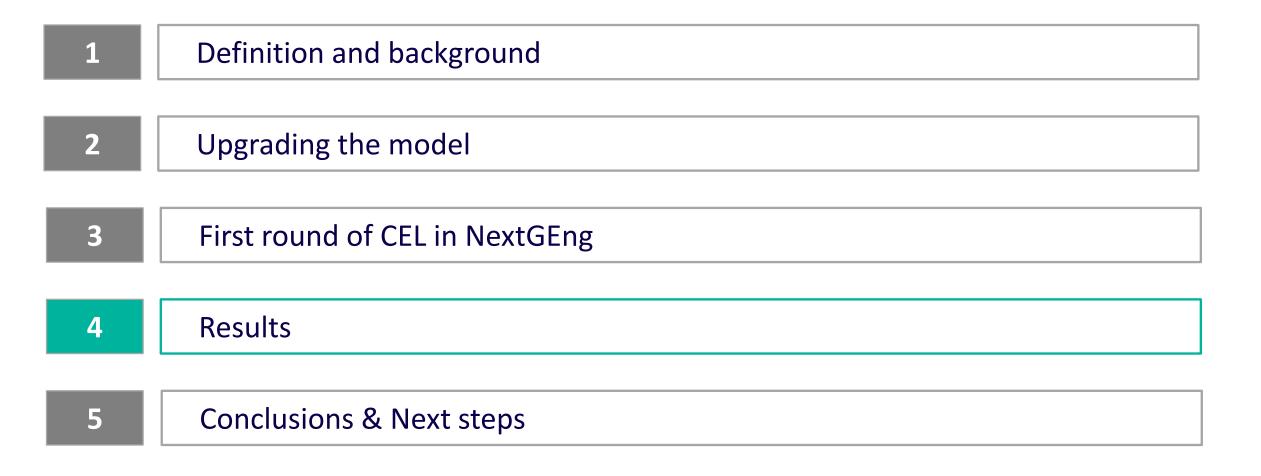
	February						
Wk	Su	Мо	Tu	We	Th	Fr	Sa
5					1	2	3
6	4	5	6	7	8	9	10
7	11	12	13	14	15	16	17
8	18	19	20	21	22	23	24
9	25	26	27	28	29		

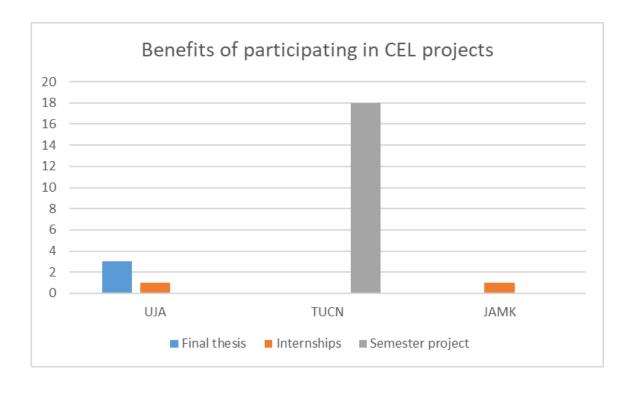
	March						
Wk	Su	Мо	Tu	We	Th	Fr	Sa
9						1	2
10	3	4	5	6	7	8	9
11	10	11	12	13	14	15	16
12	17	18	19	20	21	22	23
13	24	25	26	27	28	29	30
14	31						

	April						
Wk	Su	Mo	Tu	We	Th	Fr	Sa
14		1	2	3	4	5	6
15	7	8	9	10	11	5 12 19	13
16							
17	21	22	23	24	(25)	26	27
18	28	29	30				

Week 17 → Final presentations

- 18/04: CEL2-TUCN
- 25/04: CEL1-ISR
- 26/04: CEL3-VALMET





Results

Indicator code	Qualitative/Quantitative indicators	Result
Q1	- 50% of participant students gave positive feedback on CEL project activities, teachers involvement and company/research group experts interaction	 - 78.2 % of the students were strong or rather agree about the HEI-supervisors support. - 86.6% were strong or rather agree about the company/research group experts support.
Q2	- 90% of the involved students pass the final CEL project assessment	- 100% of the involved students pass the final CEL project assessment
Q3	- 70 % of the students have improved their soft skills (work in teams, prepare and give presentations etc.)	- 90.9% of the supervisors were strong or rather agree that students have improved their soft skills (work in teams, prepare and give presentations etc.)
Q4	- 70 % of the students have improved their technical competences on the project topic	- 81.8% of the supervisors were strong agree that students have improved their technical competences on the project topic
Q5	- all (100%) participating students have work in international teams	- 100% worked international teams
Q6	- 1 report on CEL1-ISR project implementation	- 1 report: R4.7.a Report of CEL1-ISR implementation
Q7	- 1 virtual seminar	- 1 virtual seminar held on 19th of April 2024

Results

- Great way to test your creativity
- Developing soft skills and interdisciplinary topics
- The atmosphere, challenge was greatly organized and had clear information. The **intensive weeks phase was also good**.
- The meetings were organized well and they were helpful
- International work. Interesting project.
 Professional supervisors.
- International experience, meeting great people, seeing other technical views or perspectives.
- Approaching the real industry, learning about its challenges and it functioning.
- To work speaking only English, since most probably it is what most of us will find when we look for a job

- Longer intensive week
- More participants
- I felt that one week after the last meeting wasn't enough time to prepare the final report.
- Instructions for the final report were very broad so I instructed my team to write it how I wanted it to be like! :D Moving forwards the final report should have better instructions.

Results

- **Team working** for students from different universities, experience for students and teachers also, technical skills improvement of the students.
- Project topic; intensive week involvement from students and teachers; social activity
- Their written reports have been improved from the first draft to the final ones. Oral presentations have included a good combination of words, pictures, and graphics.
- Finally, the **collaborative work** is clearly evident that has represent a great perspective to get more experience and knowledge among the members of each group.
- Mixed teams of two students each from the 3
 participating countries. Facing the difficulties at working in a collaborative groups.

- If more days are allocated to intensive week, I estimate an increase in the results produced by the students.
- I have detected in the **final reports** that students did not include any references (book, electronic manuals, software , etc..) and I consider these information is so important .
- About oral presentations, its contents should be structured and have the following parts: title participants, introduction, methods, results, discussion, conclusions and references. Not ever have been well-organized.

SUPERVISORS

Definition and background Upgrading the model First round of CEL in NextGEng 3 4 Results 5 Conclusions & Next steps

Conclusions & Next Steps

BENEFITS OF DOING CEL PROJECTS

- Possibility of doing the bachelor thesis or semester projects in the project subject
- Internships
- Multidisciplinary cooperation
- International cooperation
- Solving a case of study from Industry
- Solving a case of study of a Research Group
- 2 Define the second round schedule (10/2024)
- 3 Participants selection (10/2024-12/2024)
- 4 Planning the trip for the intensive week (12/2024-02/2025)

TO IMPROVE

- Longer intensive weeks
- More time to prepare the final report
- Clear instructions to prepare the final report

Next steps for the second round

1 Topic selection 10/2024

Improving Products via Redesign for Additive Manufacturing

Factory of the future in the paper industry

Evaluation of the screws tightening and elongation in PCB mounting operations

Conclusions & Next

Shall we continue?....

TECHNICAL UNIVERSITY

JAMK, 2023

